Sports Betting Tips - If Bets and Reverse Teasers

· 10 min read
Sports Betting Tips - If Bets and Reverse Teasers

"IF" Bets and Reverses

I mentioned last week, that if your book offers "if/reverses," it is possible to play those instead of parlays. Some of you might not discover how to bet an "if/reverse." A complete explanation and comparison of "if" bets, "if/reverses," and parlays follows, together with the situations where each is best..

An "if" bet is exactly what it appears like. You bet Team A and when it wins then you place the same amount on Team B. A parlay with two games going off at differing times is a kind of "if" bet in which you bet on the initial team, and when it wins you bet double on the next team. With a true "if" bet, rather than betting double on the next team, you bet an equal amount on the second team.

It is possible to avoid two calls to the bookmaker and lock in the existing line on a later game by telling your bookmaker you intend to make an "if" bet. "If" bets may also be made on two games kicking off at the same time. The bookmaker will wait before first game has ended. If the initial game wins, he'll put the same amount on the second game even though it was already played.

Although an "if" bet is really two straight bets at normal vig, you cannot decide later that so long as want the second bet. Once you make an "if" bet, the second bet cannot be cancelled, even if the second game has not gone off yet. If the initial game wins, you will have action on the next game. For that reason, there is less control over an "if" bet than over two straight bets. Once the two games you bet overlap in time, however, the only method to bet one only when another wins is by placing an "if" bet. Of course, when two games overlap in time, cancellation of the second game bet is not an issue. It should be noted, that when both games start at differing times, most books won't allow you to complete the second game later. You need to designate both teams once you make the bet.

You can create an "if" bet by saying to the bookmaker, "I want to make an 'if' bet," and, "Give me Team A IF Team B for $100." Giving your bookmaker that instruction would be the identical to betting $110 to win $100 on Team A, and then, only when Team A wins, betting another $110 to win $100 on Team B.

If the first team in the "if" bet loses, there is no bet on the second team. No matter whether the second team wins of loses, your total loss on the "if" bet would be $110 once you lose on the first team. If the first team wins, however, you would have a bet of $110 to win $100 going on the second team. If so, if the next team loses, your total loss would be just the $10 of vig on the split of the two teams. If both games win, you would win $100 on Team A and $100 on Team B, for a complete win of $200. Thus, the utmost loss on an "if" will be $110, and the maximum win will be $200. This is balanced by the disadvantage of losing the entire $110, rather than just $10 of vig, each and every time the teams split with the first team in the bet losing.

As you can plainly see, it matters a great deal which game you put first in an "if" bet. In the event that you put the loser first in a split, you then lose your full bet. If you split but the loser may be the second team in the bet, then you only lose the vig.

Bettors soon found that the way to avoid the uncertainty due to the order of wins and loses is to make two "if" bets putting each team first. Instead of betting $110 on " Team A if Team B," you would bet just $55 on " Team A if Team B." and create a second "if" bet reversing the order of the teams for another $55. The next bet would put Team B first and Team A second. This type of double bet, reversing the order of exactly the same two teams, is named an "if/reverse" or sometimes only a "reverse."

A "reverse" is two separate "if" bets:

Team A if Team B for $55 to win $50; and

Team B if Team A for $55 to win $50.

You don't need to state both bets. You merely tell the clerk you need to bet a "reverse," the two teams, and the total amount.

If both teams win, the result would be the identical to if you played an individual "if" bet for $100. You win $50 on Team A in the initial "if bet, and $50 on Team B, for a total win of $100. In the second "if" bet, you win $50 on Team B, and then $50 on Team A, for a complete win of $100. The two "if" bets together create a total win of $200 when both teams win.

If both teams lose, the result would also be the same as in the event that you played a single "if" bet for $100. Team A's loss would set you back $55 in the initial "if" combination, and nothing would look at Team B. In the second combination, Team B's loss would set you back $55 and nothing would go onto to Team A. You'll lose $55 on each one of the bets for a total maximum lack of $110 whenever both teams lose.


The difference occurs when the teams split. Instead of losing $110 when the first team loses and the next wins, and $10 when the first team wins however the second loses, in the reverse you'll lose $60 on a split no matter which team wins and which loses. It works out this way. If Team A loses you'll lose $55 on the first combination, and have nothing going on the winning Team B. In the next combination, you will win $50 on Team B, and also have action on Team A for a $55 loss, producing a net loss on the second combination of $5 vig. The loss of $55 on the initial "if" bet and $5 on the next "if" bet gives you a combined loss of $60 on the "reverse." When Team B loses, you'll lose the $5 vig on the initial combination and the $55 on the next combination for the same $60 on the split..

We've accomplished this smaller loss of $60 instead of $110 once the first team loses with no reduction in the win when both teams win. In both the single $110 "if" bet and the two reversed "if" bets for $55, the win is $200 when both teams cover the spread. The bookmakers would never put themselves at that sort of disadvantage, however. The gain of $50 whenever Team A loses is fully offset by the extra $50 loss ($60 rather than $10) whenever Team B may be the loser. Thus, the "reverse" doesn't actually save us any money, but it has the benefit of making the risk more predictable, and avoiding the worry concerning which team to put first in the "if" bet.

(What follows is an advanced discussion of betting technique. If charts and explanations give you a headache, skip them and write down the guidelines. I'll summarize the rules in an an easy task to copy list in my own next article.)

As with parlays, the overall rule regarding "if" bets is:

DON'T, if you can win more than 52.5% or more of your games. If you cannot consistently achieve an absolute percentage, however, making "if" bets whenever you bet two teams will save you money.

For the winning bettor, the "if" bet adds some luck to your betting equation that doesn't belong there. If  nhà cái Casino Mocbai  are worth betting, then they should both be bet. Betting using one shouldn't be made dependent on whether you win another. On the other hand, for the bettor who has a negative expectation, the "if" bet will prevent him from betting on the second team whenever the first team loses. By preventing some bets, the "if" bet saves the negative expectation bettor some vig.

The $10 savings for the "if" bettor results from the truth that he could be not betting the next game when both lose. When compared to straight bettor, the "if" bettor comes with an additional cost of $100 when Team A loses and Team B wins, but he saves $110 when Team A and Team B both lose.

In summary, anything that keeps the loser from betting more games is good. "If" bets decrease the number of games that the loser bets.

The rule for the winning bettor is exactly opposite. Whatever keeps the winning bettor from betting more games is bad, and for that reason "if" bets will cost the winning handicapper money. When the winning bettor plays fewer games, he's got fewer winners. Remember that the next time someone tells you that the best way to win is to bet fewer games. A good winner never wants to bet fewer games. Since "if/reverses" workout exactly the same as "if" bets, they both place the winner at an equal disadvantage.

Exceptions to the Rule - Whenever a Winner Should Bet Parlays and "IF's"
Much like all rules, you can find exceptions. "If" bets and parlays should be made by a winner with a confident expectation in only two circumstances::

If you find no other choice and he must bet either an "if/reverse," a parlay, or a teaser; or
When betting co-dependent propositions.
The only time I could think of that you have no other choice is if you are the best man at your friend's wedding, you are waiting to walk down the aisle, your laptop looked ridiculous in the pocket of one's tux which means you left it in the automobile, you only bet offshore in a deposit account with no line of credit, the book includes a $50 minimum phone bet, you prefer two games which overlap in time, you pull out your trusty cell five minutes before kickoff and 45 seconds before you need to walk to the alter with some beastly bride's maid in a frilly purple dress on your own arm, you try to make two $55 bets and suddenly realize you only have $75 in your account.

As the old philosopher used to state, "Is that what's troubling you, bucky?" If that's the case, hold your head up high, put a smile on your face, search for the silver lining, and make a $50 "if" bet on your own two teams. Needless to say you can bet a parlay, but as you will see below, the "if/reverse" is an effective replacement for the parlay for anyone who is winner.

For the winner, the very best method is straight betting. Regarding co-dependent bets, however, as already discussed, you will find a huge advantage to betting combinations. With a parlay, the bettor is getting the benefit of increased parlay probability of 13-5 on combined bets that have greater than the standard expectation of winning. Since, by definition, co-dependent bets must always be contained within exactly the same game, they must be made as "if" bets. With a co-dependent bet our advantage comes from the truth that we make the second bet only IF among the propositions wins.

It could do us no good to straight bet $110 each on the favourite and the underdog and $110 each on the over and the under. We would simply lose the vig no matter how often the favorite and over or the underdog and under combinations won. As we've seen, if we play two out of 4 possible results in two parlays of the favourite and over and the underdog and under, we are able to net a $160 win when among our combinations will come in. When to choose the parlay or the "reverse" when making co-dependent combinations is discussed below.

Choosing Between "IF" Bets and Parlays
Predicated on a $110 parlay, which we'll use for the intended purpose of consistent comparisons, our net parlay win when one of our combinations hits is $176 (the $286 win on the winning parlay without the $110 loss on the losing parlay). In a $110 "reverse" bet our net win would be $180 every time among our combinations hits (the $400 win on the winning if/reverse without the $220 loss on the losing if/reverse).

When a split occurs and the under will come in with the favorite, or higher will come in with the underdog, the parlay will lose $110 as the reverse loses $120. Thus, the "reverse" includes a $4 advantage on the winning side, and the parlay includes a $10 advantage on the losing end. Obviously, again, in a 50-50 situation the parlay would be better.

With co-dependent side and total bets, however, we have been not in a 50-50 situation. If the favorite covers the high spread, it really is much more likely that the game will review the comparatively low total, and if the favorite does not cover the high spread, it is more likely that the game will beneath the total. As we have previously seen, once you have a confident expectation the "if/reverse" is really a superior bet to the parlay. The actual probability of a win on our co-dependent side and total bets depends upon how close the lines on the side and total are one to the other, but the fact that they're co-dependent gives us a positive expectation.

The point where the "if/reverse" becomes a better bet than the parlay when making our two co-dependent is really a 72% win-rate. This is not as outrageous a win-rate since it sounds. When coming up with two combinations, you have two chances to win. You merely need to win one out from the two. Each of the combinations comes with an independent positive expectation. If we assume the chance of either the favourite or the underdog winning is 100% (obviously one or another must win) then all we are in need of is really a 72% probability that whenever, for instance, Boston College -38 � scores enough to win by 39 points that the overall game will go over the total 53 � at the very least 72% of the time as a co-dependent bet. If Ball State scores even one TD, then we have been only � point from a win. That a BC cover can lead to an over 72% of the time is not an unreasonable assumption under the circumstances.

When compared with a parlay at a 72% win-rate, our two "if/reverse" bets will win a supplementary $4 seventy-two times, for a complete increased win of $4 x 72 = $288. Betting "if/reverses" will cause us to lose an extra $10 the 28 times that the outcomes split for a complete increased loss of $280. Obviously, at a win rate of 72% the difference is slight.

Rule: At win percentages below 72% use parlays, and at win-rates of 72% or above use "if/reverses."